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ABSTRACT e

We prove that weak derivatives in general Orlicz spaces are globally

strong derivatives with respect to the modular convergence. Other i
approximation theorems involving the modular convergence are presented, which

improve known density results of interest in the existence theory for stronaly

nonlinear boundary value problems.
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SIGNIFICANCE AND EXPLANATION

One classical result in partial differential equations is the equality of
weak derivatives (i.e. derivatives in the distribution sense) and strong
derivatives (i.e. derivatives obtained from smooth functions by a limiting
process). Such an equality holds in the setting of LP gpaces, as was proved
locally by Friedrichs in 1944 and later globally by Meyers-Serrin in 1964.

Orlicz spaces are generalizations of 1P spaces where, roughly speaking,
the defining function ¢t + 1t1P is replaced by a function whose growth at
infinity is not necessarily of polynomial type. They have been successfully
used in recent years in the study of several questions from partial
differential equations, as the limiting case of the Sobolev imbedding theorem
or the existence theory for strongly nonlinear boundary value problems. 1In
the latter theory, problems related to the equality of weak and strong
derivatives in the setting of Orlicz spaces play an important role. Such an
equality does not hold for general Orlicz spaces. The main purpose of this
paper is to provide an adequate substitute by slightly modifying the limiting

process involved in the definition of strong derivatives.
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SOME APPROXIMATION PROPERTIES IN
ORLICZ-SOBOLEV SPACES

(1)

Jean~Pierre Gossez

* STATEMENT OF RESULTS

Let LM(Q) be the Orlicz space on an open subset  of RN .
corresponding to a N=-function M and let EM(Q) be the norm closure in
LM(Q) of the La(ﬂ) functions with compact support in Q. The Sobolev
space of functions u such that u and its distributional derivatives up to
order m 1lie in LM(Q) (resp. EM(Q)) is denoted by meM(Q) (reso. }
meM(Q)). Standard references about these spaces include [11,1,12]}.
A well-known theorem of Meyers~Serrin (13] states that for 1 < p < =, 3
C”(Q) n Ww'P(Q) 1is norm dense in W 'P(Q), i.e. weak derivatives in 17(2)
are globally strong derivatives (the local version goes back to Friedrichs and

his mollifiers [7]). This was extended to the Orlicz spaces setting by

Donaldson~Trudinger [4] who proved that Cw(ﬂ) n meM(Q) is norm dense in
. meM(Q). The corresponding statement with Ey replaced by Ly 1is not true,
even locally, simply because a LM(Q) function may not belong to EM(Q') for

2
Q' ccQ (take 2= 1~1,+1[, M(t) = e¥" =~ 1 and u(x) = (log |x1~1)1/2),

. Our first result concerns the density of C“(Q) n meM(Q) in meM(Q) with

respect to a weaker convergence, the so-called modular convergence [14].

THEOREM 1. Let u € WPLM(Q). Then there exist A > 0 and a secuence

w € C (R) 0 WL,(2) such that for lal <m, [M((0%, - d%w/A) » 0 as

k hd ”.
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As will be seen in the proof, it suffices to choose )\ such that
16/x p%u € LM(Q) for lal = m, where LM(Q) denotes the Orlicz class.
Consequently, when u € NmEM(Q), A can be taken arbitrary small, and we
recover from theorem 1 the result of [4] mentioned above.
The space meM(Q) will, as usual, be identified to a subspace of the

product Hl LM(Q) = HLM. NDenoting by M the N~function conjugate to M,

ol<m
we consider the weak topologies O(HLM, HEE) and G(HLM, Hpﬁ). Density
results involving the latter play an important role in the existence theory
for stronaly nonlinear boundary value problems (cf. [8,3])). Comparing the
modular convergence with O(HLM, 1L ) (lemma 6 below), we obtain the

M
following

COROLLARY 2. € (2) n W'L, () is o(NL,, ML) dense in W'L ().
M
We now turn to the approximation by functions which are smooth up to the
boundary, assuming some regularity on (. Recall that 2 is said to have the
segment property when there exist an open covering {Ui} of § and
corresponding vectors {yi € RN} such that for x € & n Ui and 0 ¢ t < 1,
x + tyj € 2; £ has the cone property when there exists a finite cone C
such that each x € % 1is the vertex of a cone Cx c 8 congruent to C. It
was proved in (8] that if @ has the segment property, then D(R) is
T, iL_) denge in WNLM(Q), where D (2) denotes the restrictions to &
’ ~

nf the functions in D(RN). This is improved in our next result under the

assumption that & also has the cone property.

N




THEOREM 3. Suppose that ! satisfies hoth the segment and the cone

property. Let u € meM(Q). Then there exist X > 0 and a seguence

u, € D(®) such that for lal < m, [o M((0%, - D%/} » 0 as k » e,

The proof will show that it suffices to choose A such that

16 (N+1) /A Dau € LM(Q) for |a| € m. Moreover the cone property is only used
to guarantee that an element Vv ¢ W1LM(Q) with compact support in % lies in
EM(Q) (the imbedding theorem of [4]) implies v € C(Q) n () or

v E LM*(Q) with M* a N=function which, by lemma 4.14 of [8), increases
essentially more rapidly than M, and so, in any case, Vv ¢ EM(Q)). This
fact probably holds under a weaker assumption on . Anyway, taking again X
arbitrary small, we recover from theorem 3 the result of [4) that if § has
the segment property, then D(f) is norm dense in meM(Q).

Finally we consider the analogue of the W:,p

spaces. ngM(Q) is

defined as the o(MlL , HEﬁ) closure of D() in WmLM(Q) and ngM(Q) as

the norm closure of D(Q) in meM(Q) (or equivalently in meM(Q)). When
32 is sufficiently regular, one can define the trace on 232 of 0% for
u € meM(Q) and J|a| € m~1, and prove that the functions in w:LM(Q)

{resp. ngM(Q)) are precisely those in meM(Q) (resn. meM(Q)) whose

trace and normal derivative up to order m-1 on 90 wvanish (cf. (6,9]).

THEOREM 4. Suppose that 1 satisfies the segment property. Let

u € ngM(Q). Then there exist ) > 0 and a sequence u € D(2) such that

for lal <m, [, M((0% =-D)/A) + 0 as k=,




The same estimate on ) as in theorem 3 holds here. Theorem 4 improves

3 our result of [8] that if  has the segment property, then D(2) is
o(llL , NIL ) dense in woL (). .
M W 0™
The proofs of the meM(Q) results of (4] referred to above as well as
those of the o(HLM, HL_) versions of theorems 3 and 4 given in [8] are
M
rather simple modifications of the standard LP proofs. To get corollary 2
o theoresc 1, 3 and 4 requires more involved calculations, although the

construction of the approximants is basically the same. BAn inecuality which %

will be used repeatedly is ;

M(] ;) < £ Y Mr r.)
i i

where r, e R and r is the maximum number of nonzero r.'s. When the

r;'s originate from a partition of unity, a control on r can be obtained

from simple topological considerations (lemma 7 below). P

PROCFS.
Given a function u(x), we denote by uy its translate uy(x) = u({x~-v),
. by us its regularization u6 =qu ¥ p6 where p6 € D(RN), os(x) =0 for
7 Ix) > §, 06 > 0 and [RN Ps = 1, and hy u, the function u. = ¢.u

b where ¢r(x) = 9(x/r) with ¢ € (RN), 0 <y €1, v(x) =1 for |x! <1

and ¢(x) = 0 for |x| » 2. The following lemma will be needed.

LEMMA 5, 1f u € LM(RN) with 2u € LM(RN), then f N M.(uv - u) + "

lyl »0 and [ Mu, -u) *0 as §*0. If uel (R ), then
— N § — )
R
)R" M(ur -u) >0 as r *» =,
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PROOF. We consider us ¢ the case of uy is treated similarly and that

9

of u is immediate. Since u, *u in L (RN), one has, for a
r 8 foc

subsequence, us + u a.e. and so M(u6 -u) + N a.,e. Moreover

1 1 1 1
M(u6 - u) < 3 M(2u6) + 3 M(2u) < 7 (M(2u))6 + 3 M(2u)

where we have used Jensen's integral inequality. Since (M(2u))6 + M(2u) in
LY (RY), we conclude by vitali's theorem that M(ua -u) + 0 in LYRN).
Q.E.D.

Thus we see that for any u € LM(RN), u6 + u with respect to the modular
convergence (i.e. there exists A > 0 such that f N M((u‘5 - u)/X) > 0). 1In

R
does not converge to u in the mean (i.e. the above with

general u‘s
A =1) and a fortiori in norm. When u € EM(RN), then 2u/x & L (R") for
all X > 0 and by taking A arbitrary small, we eventually derive from lemma

5 that ug converges to u in norm, a result originally given in (2].

Similar remarks apply to ug .

PROOF OF THEOREM 1. Let u € WmLM(Q) and choose A > 0 such that 16/)

p%u € LM(Q) for lal =m. Let € > 0, ¢ € 1. We will prove that there

exigsts v € C“(Q) n meM(Q) such that

(1) [q Mm% - D%m /) < e

for |al < m.




Define for 1 =1, 2,.4.,

Qi = {x€e 9 [x] < i and dist(x, ) > 1/i} ,

and also, for convenience, 9_2 = 9_1 = Qo = $. Let {wi; i=1,2,...} bea

c” partition of unity on & such that supp wi c Qi+1\91_1. For each

i=1,2,..., let 95 = pi be a mollifier satisfying
i
4
(2) §,< 1/tiv1)(4+2) *
B8 Yo e B8 Y i+1
(3) (D wi D u) Py D wi D uHM'Q < e)/a2
for all |8 + vl € m with [Y| < m, and
(4) fo M8((y, D% * o, - ¥, D%w/A) < es2
2 i i i
for |al = m. Here I | denotes the Luxemburg norm in Ly (2):
M,
lwly o = inf{h > 0; [q Mtw/n) < 1}

and the number a is defined in terms of the coefficients which appear in

Leibnitz formula:




Condition (3) can be fulfilled because on a smooth bounded domain, meM is
(compactly) imbedded into Wm'1EM (see the introduction) and so DYu,

lY] < m, 1lies in sﬁ°°(9). Condition (4) can be fulfilled by applying lemma

5. It follows from (2) that (wiu) * p

i has support in Thus the

Qi+2\ Qi~2'

series

v = .z (¢iu) * oy
i=1

d
is trivially convergent and v € C (f). The fact that v ¢ meM(Q) will

follow once (1) is proved.

To verify (1), take j = 1,2,... and write

341
[ Mm% =%y = [, MmOl 0% pw * o, - %y
Q. Qj =1 i i i
-1 341 o 8 8
<27 fo om2 ] ] () (07, pTw) * o, = %, DYw/)
3 i=1 B+y=a, |y |<m ' !
-1 A a [+3
+ 2 IQ, M(2 _Z ((y;Du) * o, =Y Dwy/A) =1 +1I, ,
i i=1
where the term I, does not appear when lal < m. We have
-1 -1 Y a i*1 . B
1,<e27a”t ] 27 () m2 " acoPy 0T w0, - by 0Twr/en)
i=1 B+y=a, |yi<m * ! *

< E/2

by (3) and the definition of the Luxemburg norm. To study 12, we obhserve

that for a.e. x € Qj,




3+1 i1
Mz ]y, 0%) * . -y DM/ < 17 M(8((y,0%a) *p, = ¥ D w)/A)

4
i=1 i=1

since it most 4 terms of the sum are nonzero at x. Consequently, usina (4),

we et T € £/8. So

<

fo m@% = 0%w/m) < e

3

and letting j » ®, we obtain (1),

Q.E.D.

By 2 a simple modification of this proof one can show that the uk's in

o
the statement of theorem 1 can be taken so that Dauk + Du in norm for

lal < m.

Corollary 2 is a direct consequence of theorem 1 and the following

LEMMA 6. Let wug, ue LM(Q). If u *u with respect to the modular

convergence, then u, *u for c(LM, L.
M

PROOF. Let X > 0 be such that [o M((4 - u)/A) + 0. Thus, for a

subsequence, w o *u a.e. in . Take v e L (). Multiplying v by a
M

suitable constant, we can assume Av € L_(Q). By Young's inequality,
M

I(uk - wv) € M((a = w)/A) + M(Ov)

which implieg, by Vitali's theorem, that fQ |(uk - u)v| » 0.




Rl i e

The proof of theorems 3 and 4 uses the followinag lemma from general

topology.

N e i

LEMMA 7. Let A be a closed subset of R' and let {Ui} be an open

covering of A. Then {Ui} can be refined into a locally finite countable

open covering {Vj} of A with the property that at most N + 1 distinct

Vj's have a nonempty intersection.

Lemma 7 follows from the fact that the covering dimension of RN is X
(cf. [5]1). All we need actually for our purposes is an estimate on the
maximum number of intersecting Vj's which is independent of 2 and of the
covering {Ui}. Such an estimate can be obtained directly by elementary

means, as we now briefly indicate.

Recall Lebesgue's lemma (cf. [10]): aiven an open covering of a compact
set K in a metric space, there exists r > 0 such that the open r-tall
about each point of X is contained in some member of the covering. %We arnlv
this lemma successively to the covering {Ui} and to the sets

A n.§(0,1), A n (5(0,2)\8(0,1)),... and get a (possibly finite) sequence of
radius Tyr Yos Lqseee which clearly can be taken such that each r, < 1/3

and ry > ry > ... Now we cover A N 5(0,1) with a finite nurber of talls

By , r.,) chosen in such a way that yv_ . ¢ A ° R(0,1)  but
1,2 1 LN
lo oo U . Nex N RERANG . : ’ E ,2 . 14 A
y1,£ é B(y1,1, r1) u L B(y1,£_1, r1) Next we cover A (R(Q,2) B(0,71,
with the balls R{y; ¢, ry) and a “inite number of balls =(va v, ra! che s
, , 2
in such a way that Yo x € A n (B(0,2)\R(N,1)) but Vo f \in(v1lx,r1) a=i

B wee L , . S v, s Famile B nf the ;
y2,k # (y2’1,r2) L L B(yz,k-1 rz) And so on The family )

balls R(yp'q, r

p) constructed in this way constitutes a leocally “inite




countable open covering of A and is a refinement of {Ui}. Moreover, since

each r, is < 1/3, a ball B(yp'q, rp) can only intersect either balls

with radius r, and or halls with radius r, and r..q. Also,

rp_1
since rq > rp>..., the only ball of the family B to which vy, o belonas
is B(y

ry). Using these facts it is then easy to verify that any

p,a’ Ip

subfamily of B with nonempty intersection contains at most 2dy members,
where dy denotes the maximum number of points xg which he put inside the

unit ball B(0,1) of RN with |x_ - xg! 21 for s # t.

By

PROOF OF THEOREM 3. Let wu € meM(Q) and choose A > 0 such that

16(n+1) /A Du € L,(?) for lal € m. We will show that for lal < m,
(6) [q M2(0% - 0% )/2) + 0

as r *» «®, where u, =v.u is the function involved in lemma S. We will

also show that for each r and for each n > 0, n € 1, there exists

v ¢ D(Z) such that for |al € m,
(7) fﬂ M(2 (D% u - pdv)/x) € n .

The conclusion of theorem 3 then follows easily.

To verify (), we write

~10-

1
!
;
|
1]




fq m200% - 0% ) /)

<271 [ ma®a - ¢ 0%/

181, 8

-1 -1
a @ (D ¢)(x/r)DYu/\) .

(B)
B+y=a,|B]>0

+ 2 IQ M(da r
Here a 1is the number defined by (5). Each term on the right hand side goes
to zero as r * ®, the first one by lemma 5 and the second one by direct
examination.

To verify (7) we use the covering {Ui} of © given by the segment
property. Refining {Ui} if necessary, we can assume that it satisfies the
properties stated in lemma 7, In particular i = 1,2,... . Let {wi} be a ‘

¢~ partition of unity on & subordinate to {Ui}. Clearly supp y, © v/

1] -
for some open set Ui with compact closure Ui c Ui. Write Fi = Ui L1

an@ T = Fi - ty, where y; is the vector assnciated to Uj by the

i,t i

segment property. Extend u. outside £ by zero and note that VU,

vanishes identically for i > some « Note also that the translate

ir

. - N
‘ = (v +
(wiur)t(x) (viur)(x tyi), 0 ¢t <1, belongs to W'L (R \ri,t) and

that, by the segment property, dist(l"i e ) > 0. For each

’

i = 1’2""'1r’ choose 0 < t; < 1 and ;:)6i = Py 5i < dlst(ri'ti, ), such
that
] Y 8 Y i+2
[ * -

(8) | (D wi D ur)ti pi D wi D ur"M,Q < An/2 a
for all B8 + y| < m with J|y| ¢ m, and

a a . i
9 4 (N+1 : * - ) <
(9) [, mat+n) (D ale Ty TP u )/X) < n/2

s lae
’

-11-




for |al = m. Condition (8) can be fulfilled because DYur € EM(Q) for
Y| < m (the cone property is used here, see the introduction). Condition

(2) can be fulfilled by two consecutive applications of lemma 5. Taking ¢t;

and éi smaller if necessary, we can assume that supp(\piur)t * P; © Ui‘
i

Defi
efine i

r —

= B *
(10) v _Z (bud, *o, ¢ D(Q)
i=1 i

and observe that by the property of lemma 7, at each x € {, the sum above

contains at most (N + 1) nonzero terms. We have

i
a _ .« = Tr o _ %
[ m2(0v - D u)/A) IQ M(2 £ ((p (wiurnti * o, =D (Y u NN
-1 ir o B Y 8 Y
<2 foma ]T ] (g) ((D7y;Dlu ) * p, = DY DU )/
i=1 B+y=a, |Y|<m i
-1 vir Q a
! * - =
+ 270 [o M4 Ly (RN tey s P/ = Tk

where the term I, does not appear when |a| < m. Now

-3 Q ,
) /g M(zi"za((newiDYur)t *o, = DD /A
1 B+y=a, |y I<m i

I, <n 271!

[ e 12
L2 ]
N

< n/2

by (8) and the definition of the Luxemburg norm. Since at a.e. x € I,

i
°r a ° - a
M(4 1:1 ((y,D ur)ti Py = VDU /A

3 1

i
< (e~ 3F M(4(N+1)(wio°‘ur)t *eo, - wio“ur)/x) ,

i=1 i

-12a-




we obtain from (9) that I, € n/2, and so (7) is proved.

PROOF OF THEOREM 4. It is essentially the same as that of theorem 3

except that one replaces in (10) t. by -~t.

i i and chooses §, with
i

. N
Gi < dist ((supp vy n T) + tiyi' R ) .

One also uses the fact that by extending a W?LM(Q) function by zero outside

2, one gets a meM(nN) function. This allows us to avoid the cone
property for Q.
Q.E.D.

We remark that when  1is bounded, the above arguments can be carried

through without using lemma 7. The coefficient X is then chosen so that
8b/A p%u € LM(Q) for |al = m, where b is the number of pieces of the

covering {Ui} needed to cover .

As for theorem 1, one can show by a simple modification of the proofs

that the uk's in the statement of theorems 3 and 4 can be taken so that

Dauk > p®u in norm for |al| < m.
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